Studienamiddag diervoeding 8 oktober 2024

Coock+ Optevar

Optimale eiwitvoorziening in varkensvoeders

Sophie Goethals, Sam Millet, Nico Peiren, Tim Van De Gucht Paul Bikker, Alfons Jansman

Augustin Dumoulin, Liesbeth Verheyen

Stikstofdecreet gepubliceerd in Staatsblad

Het veelbesproken Vlaamse stikstofdecreet of het decreet 'over de programmatische aanpak stikstof' is vandaag (22 februari) gepubliceerd in het Belgisch Staatsblad.

Background

Less crude protein in the diet can reduce nitrogen excretion

Crude protein level

low

Optimal growth performance High N excretion

Stikstofdecreet gepubliceerd in Staatsblad

Het veelbesproken Vlaamse stikstofdecreet of het decreet 'over de programmatische aanpak stikstof' is vandaag (22 februari) gepubliceerd in het Belgisch Staatsblad.

Background

Less crude protein in the diet can reduce nitrogen excretion

Crude protein level

low

Optimal growth performance
Less N excretion
Enhanced N utilization

Optimal growth performance High N excretion

high

Stikstofdecreet gepubliceerd in Staatsblad

Het veelbesproken Vlaamse stikstofdecreet of het decreet 'over de programmatische aanpak stikstof' is vandaag (22 februari) gepubliceerd in het Belgisch Staatsblad.

Background

Less crude protein in the diet can reduce nitrogen excretion

Crude protein level

low

Optimal growth performance
Less N excretion
Enhanced N utilization

Optimal growth performance High N excretion

high

Stikstofdecreet gepubliceerd in Staatsblad

Het veelbesproken Vlaamse stikstofdecreet of het decreet 'over de programmatische aanpak stikstof' is vandaag (22 februari) gepubliceerd in het Belgisch Staatsblad.

Background

Less crude protein in the diet can reduce nitrogen excretion

low

+ synthetic AA

Deficiences or imbalances of AA Lower groan performance Hig er feedintake

Optimal growth performance Less N excretion Enhanced N utilization

Optimal growth performance Less N excretion **Enhanced N utilization**

Optimal growth performance High N excretion

high

Background

Amino acid requirement of growing and finishing pigs

C.M.C. van der Peet-Schwering, P. Bikker

Background

van der Peet-Schwering and Bikker, 2018

Amino acid requirement of growing and finishing pigs

Methionine + Cysteine 1 study in finishing pigs

Threonine Few studies between 50 – 90 kg

Tryptofaan Few studies in finishing pigs

Tryptofaan Few studies in finishing pigs Isoleucine No studies in fattening pigs

Valine 1 study in finishing pigs

Leucine

Histidine

Phenylalanine + Tyrosine

No studies in grower-finishing pigs

No studies in grower-finishing pigs

No studies in grower-finishing pigs

Variation between farms

- Growth performance
- Nutrient utilisation (efficiency)
- Sanitary conditions
- Impact on AA requirements
- → From general to farm specific AA requirements

N digestibility (%)

Kampman - van de Hoek et al. (2014)

Background

high sanitary conditions

Objective

Formulating recommendations for optimal amino acid composition of pig feed based on farm-specific conditions in combination with

- → a lower crude protein content
- → a quantification of the environmental impact

1. Requirement of 4 AA's in finishing pigs

2. Classification of farms related to sanitary conditions and estimation of farm-specific AA requirements

3. Quantification of Nexcretion, NH₃-emissions and carbon footprint

Work packages

B – Enterprise-specific actions

Incorporation of new AA recommendations in feed formulation

Evaluating low-protein feeds on farms

Cost-benefit analysis of adjusted AA recommendations

Adapting feed recommendations for customers

WP1 - Coordination

WP2 – AA requirements

- 4 AA –Met, Val, Ile, Leu
- In vivo dose-response performance trials (4; 1 for each AA)
 6 AA levels, 8 pens (5 animals/pen)
 Growth performance 80 kg 115 kg
- Requirement estimation via non-linear models

WP3 – Environmental impact

• Scenario selection based on differences in N-efficiency

In vivo respiration chambers trial
 NH₃ and GHG emissions

• Manure emission measurement

Carbon footprint calculation of feed

WP3 – Environmental impact

% excretion reduction > % increase N efficiency

3.1 kg N - 0.2 kg N = 2.9 kg N retained N-efficiency: 2.9 kg N retained/6.3 kg N consumed = 46% efficiency

10% efficiency increase

2.9 kg N retained/5.7 kg N consumed = 51% efficiency

WP3 – Environmental impact

Scenario selection based on differences in N-efficiency

Nitrogen utilisation efficiency is related to

- Feed conversion ratio or residual feed intake
- Lean meat content
- Different sexes
 - Different slaughter weights
 - Different dietary CP and AA contents

-

WP4 – Farm-specific AA requirement

- 1) Classification of pigs farms (growing-finishing pigs)
 - Factors that influence performance and AA requirements
 - Characteristics that can be estimated for practical farms

WP4 – Farm-specific AA requirement

1) Classification of pigs farms (growing-finishing pigs)

- Factors that influence performance and AA requirements
- Characteristics that can be estimated for practical farms

(clinical/subclinical)

Pathogen exposureSanitary conditions

2) Tool to estimate AA requirements in relation to farm conditions

- Previous studies WUR/ILVO, scientific literature
- Quantification and integration in tool

3) Practical application and validation

- Identify and characterise farms of interest
- Calculate farm specific AA requirements
- Apply standard and farm specific AA recommentations

WP5 - Demonstration

In vivo feeding trial

Demonstrating that a low-protein diet (with adjusted AA profile) can result in (equally) good performance with reduced emissions and carbon footprint compared to standard feed

Measurements: growth performance, carcass quality

Calculation: N-efficiency, carbon footprint

Estimation: NH₃ emission

WP6 – Disseminatie

- Workshops
- Newsletters and email
- Trade press
- Presentations at ILVO/BFA events
- Scientific papers

Thank you

Sophie Goethals, Sam Millet Nico Peiren, Tim Van De Gucht Paul Bikker, Alfons Jansman

Augustin Dumoulin, Liesbeth Verheyen

