

A review on the lysine requirement of weaned piglets

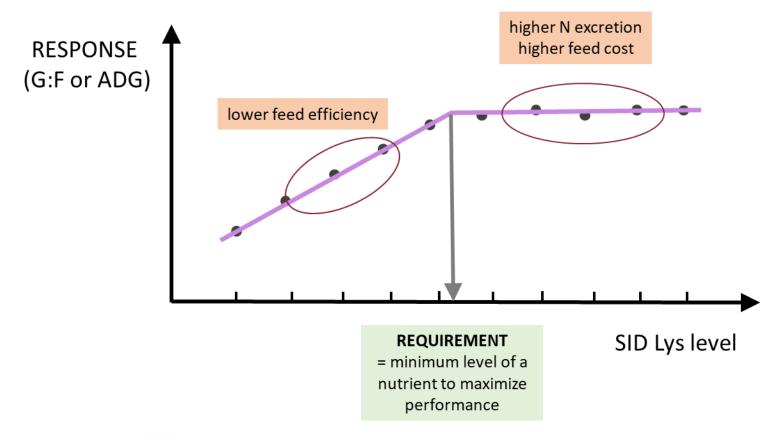
Sophie Goethals¹, Paul Bikker², Jordi Rijpert², Bart Ampe¹, Wouter Spek², Sam Millet¹

¹Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
²Wageningen University & Research, the Netherlands

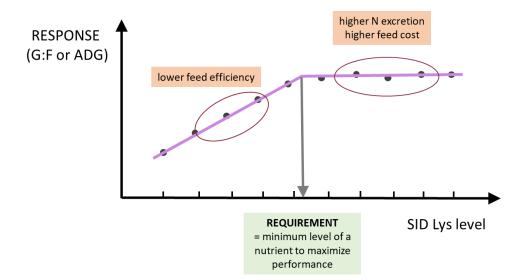
8 oktober 2024 Studienamiddag diervoeding

PPS project 'Voeding op maat'

Background


Lysine is typically the first limiting AA in pig diets → reference AA for other AA

Background



Background

Reported values for the lysine requirement in weaned piglets: 9.8 to >16 g SID Lys/kg

Requirement estimates can vary

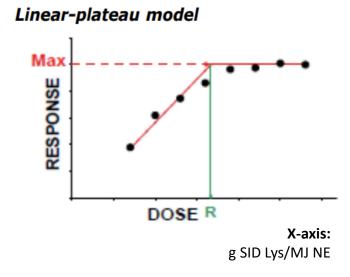
- Statistical approach
- Performance parameter
- Feed evaluation system to estimate AA content and digestibility

REQUIREMENT

- · feed intake capacity
- protein deposition capacity
- genotype, sex, age
- health status
- individual variation

OBJECTIVE

- → Estimate the Lys requirement for maximal growth performance in weaned piglets
- → Address the sources of variation influencing this requirement


M&M – study selection

Literature review

Selection criteria:

- Dose-response technique: at least 4 levels of lysine
- Animal performance response criteria (ADG, ADFI, FCR or G:F)
- Feed ingredient/nutrient composition of diets
- BW range: 5-30 kg
- Lysine should be first limiting nutrient

keywords → abstracts selection → full text selection → final dataset

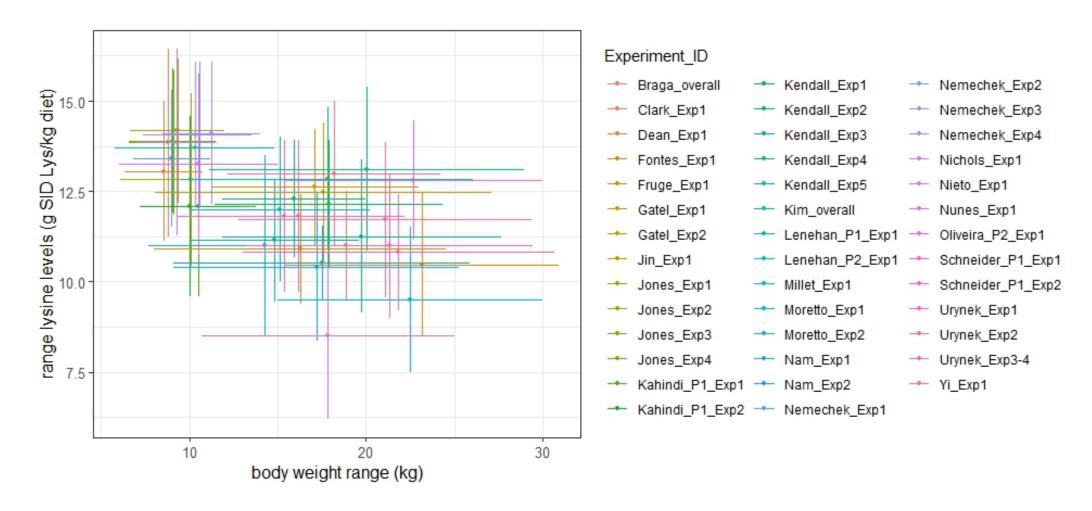
344 papers

86 papers

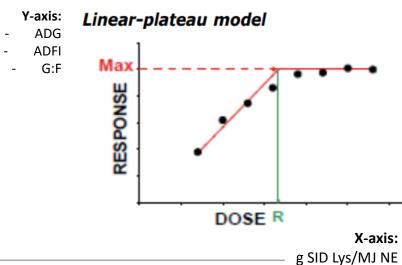
37 papers
58 experiments
287 treatment means

ADG ADFI

G:F


24 papers 41 experiments 206 treatment means

Results – study selection



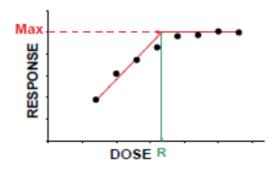
M&M - calculations

energy DE, ME, NE, EW -> NE

based on conversion factors (Noblet et al., 2022)

SID, AID, analyzed total, calculated total -> **SID Lys**based on total Lys levels reported in the paper and CVB SID digestibility coefficients

CP calculated or analyzed CP -> SID crude protein
based on total CP level reported in the paper and CVB SID digestibility coefficients


Lys

M&M – dose-response studies

Linear-plateau model

- ⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials a varying (increase) or constant SID Lys/CP ratio
- ⇒ Either or not in combination with the addition of constant or graded levels of one, two or more crystalline EAA

a constant or varying (decrease) SID EAA/Lys ratio

⇒ Lysine must be first limiting factor, other nutrients should be non-limiting

M&M – Lys as first limiting factor

⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials

a <u>varying (increase)</u> or constant SID Lys/CP ratio

Item	Content in body protein ^d	Maximum efficiency $(k_{AA})^e$
Protein	1.0000	0.81
Lysine	0.0696	0.72
Methionine	0.0188	0.64
Cystine	0.0103	n.a.
Methionine + cystine	0.0291	0.51
Threonine	0.0370	0.61
Tryptophan	0.0095	0.57
Isoleucine	0.0346	0.60
Leucine	0.0717	0.76
Valine	0.0467	0.71
Phenylalanine	0.0378	0.82
Tyrosine	0.0286	n.a.
Phenylalanine + tyrosine	0.0664	0.75
Histidine	0.0279	0.93
Arginine	0.0626	1.54

Van Milgen et al., 2008

160 g CP in diet SIDC CP = 85% (assumption) 160 g CP x 85% = 136 g SID CP

136 g SID CP in diet max efficiency = 81% 136 q SID CP x 81% = 110 q SID CP

110 g SID CP will be incorporated in body protein 6.96% is the ratio of lysine in body protein 110 g SID CP x 6.96% = 7.66 g SID Lys

7.66 g SID Lys will be incorporated in body protein

Max efficiency = 72%

7.66 g SID Lys/ 72% = 10.6 g SID Lys

10.6 g SID Lys in diet is required to make optimal use of the 160 g CP provided by the diet for protein accretion

EXAMPLE

In a diet with a CP content of 160 g/kg diet

- Lys is limiting protein accretion up to a level of 10.6 g SID Lys/kg
- When SID Lys level > 10.6 g/kg diet => Lys is probably not used as essential AA

M&M – Lys as first limiting factor

⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials a constant or varying (increase) SID Lys/CP ratio

Item	Content in body protein ^d	Maximum efficiency $(k_{AA})^e$
Protein	1.0000	0.81
Lysine	0.0696	0.72
Methionine	0.0188	0.64
Cystine	0.0103	n.a.
Methionine + cystine	0.0291	0.51
Threonine	0.0370	0.61
Tryptophan	0.0095	0.57
Isoleucine	0.0346	0.60
Leucine	0.0717	0.76
Valine	0.0467	0.71
Phenylalanine	0.0378	0.82
Tyrosine	0.0286	n.a.
Phenylalanine + tyrosine	0.0664	0.75
Histidine	0.0279	0.93
Arginine	0.0626	1.54

Van Milgen et al., 2008

$\frac{100}{0.81}$	\rightarrow	123.5 g of digestible protein (SID CP)
6.96 0.72	\Longrightarrow	9.7 g of digestible lysine (SID Lys)

$$\frac{9.7}{123.5} = \mathbf{0.0783}$$

Theoretical max ratio of SID LYS:SID CP?

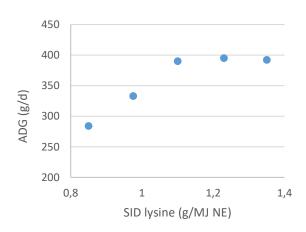
SID Lys:SID CP ratio

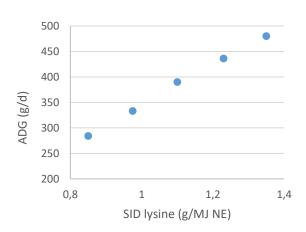
- > 0.0783, NEAA or nitrogen itself could be first limiting
- Ratio < 0.0783 is selection criterium
- For 41 of 58 experiments, all dietary treatments had a ratio < 0.0783

M&M – Lys as first limiting factor

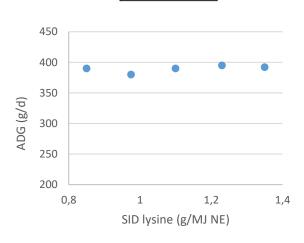
⇒ Either or not in combination with the addition of constant or graded levels of one, two or more crystalline EAA a constant or varying (decrease) SID EAA/Lys ratio

- Estimation of AA profile requires many assumptions
- Very few studies (17) have assumed ideal protein profile
- No selection criterium as such




M&M – potential outcomes

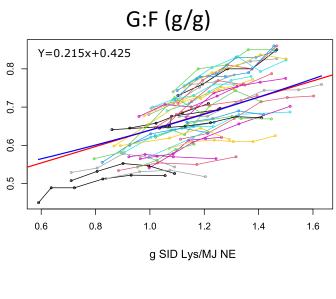
Linear-plateau

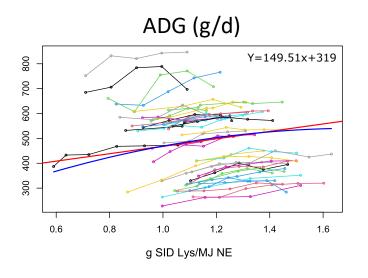

- Exceeding optimal lysine requirement;breakpoint = requirement?
- Other limiting factor?

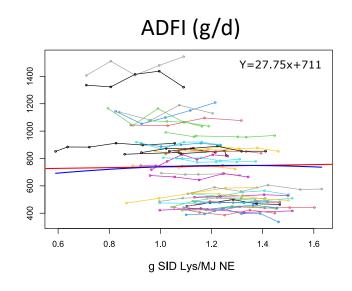
Linear increase

- Lysine requirement at least the highest tested Lys level?
- Other limiting factor?

Constant


- Tested lysine levels above limiting lysine concentration?
- Other limiting factor?





Results – combined data

Linear — Quadratic

G:F and ADG

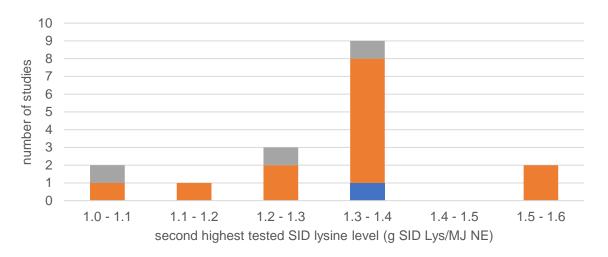
No linear-plateau model fit Response: mainly linear increase

Not considerably affected by lysine content

Results – individual experiments

Individual experiments (17 of 41 experiments assumed to have ideal protein profile)

reference ^{1,2}	response ³	response ³ model parameters			estimated Lys requirement ⁴ (g SID Lys/MJ NE)		
		linear	quadratic		linear-plate	au	
			quadratic				
		slope	term	slope	, breakpoint	plateau	
Nieto Exp1 2015	lin&quad&ling	0.14	-0.415	0.22	0.861	0.522	0.861
Fontes_Exp1_2005	lin&quad&linp	0.2	-0.896	0.36	1.048	0.639	1.048
Lenehan P1 Exp1 2004	lin&quad&ling	0.21	-0.825	0.32	1.108	0.649	1.108
Kendall_Exp5_2008	lin&quad&linp	0.11	-0.531	0.29	1.197	0.672	1.197
Nemechek_Exp3_2012	lin&quad&ling	0.26	-0.91	0.43	1.342	0.770	1.342
Nunes Exp1 2008	lin&quad&ling	0.32	-1.007	0.39	1.37	0.787	1.370
Nemechek_Exp4_2012	lin&quad&ling	0.21	-0.67	0.29	1.389	0.832	1.389
Oliveira P2 Exp1 2006	lin&-&-	0.39	-	-	-	-	>1.091
Nam_Exp2_1994	lin&-&-	0.3	-	-	-	-	>1.094
Braga_overall_2018	lin&-&-	0.23	-	-	-	-	>1.119
Schneider P1 Exp1 2010	lin&guad&-	0.18	-0.473	-	-	-	>1.158
Nam Exp1 1994	lin&-&-	0.07	-	-	-	-	>1.172
Gatel Exp1 1992	lin&-&-	0.22	-	-	-	-	>1.205
Schneider P1 Exp2 2010	lin&-&-	0.21	-	-	-	-	>1.235
Kendall Exp2 2008	lin&-&-	0.29	-	-	-	-	>1.242
Lenehan_P2_Exp1_2003	lin&-&-	0.2	-	-	-	-	>1.247
Kendall_Exp3_2008	lin&-&-	0.14	-	-	-	-	>1.251
Millet_Exp1_2020	lin&guad&-	0.34	-0.378	-	-	-	>1.255
Kendall Exp1 2008	lin&-&-	0.22	-	-	-	-	>1.262
Fruge Exp1 2017	lin&-&-	0.31	-	-	-	-	>1.299
Yi Exp1 2006	lin&-&-	0.08	-	-	-	-	>1.317
Kahindi P1 Exp2 2014		0.31	-0.244	-	-	-	>1.327
Kahindi P1 Exp1 2014		0.24	-	-	-	-	>1.327
Kendall_Exp4_2008	lin&guad&-	0.2	-0.506	-	-	-	>1.336
Jones Exp3 2014	lin&-&-	0.29	-	-	-	-	>1.362
Jones Exp4 2014	lin&-&-	0.32	-	-	-	-	>1.363
Jin Exp1 1998	lin&guad&-	0.34	-0.433	-	-	-	>1.37
Jones Exp1 2014	lin&-&-	0.31	-	-	-	-	>1.376
Jones Exp2 2014	lin&-&-	0.36	-	-	-	-	>1.376
Nemechek Expl 2012	lin&guad&-	0.29	-0.437	-	-	-	>1.39
Clark Exp1 2017	lin&-&-	0.26	-	-	-	-	>1.506
Nichols Expl 2018	lin&-&-	0.18	-	-	-	-	>1.547
Moretto Exp1 2000	-&quad&-	-	-0.943	-	-	-	-
Moretto Exp2 2000	-&guad&-	-	-0.911	-	-	-	-
Urynek Exp3-4 2003	-&guad&-	-	-0.581	-	-	-	-
Dean Exp1 2007	-8-8-	-	-	-	-	-	
Gatel_Exp2_1992	-&-&-	-	-	-	-	-	
Kim overall 2011	-88	_	-	-	-	-	•
Nemechek Exp2 2012	-&-&-	-	-	-	-	-	
Urynek Exp1 2003	-8-8-	-	-	-	-	-	
Urynek Exp2 2003	-8-8-	-	-	-	-	-	


Linear: 32

Linear & quadratic: 13

Linear & quadratic & linear-plateau: 7

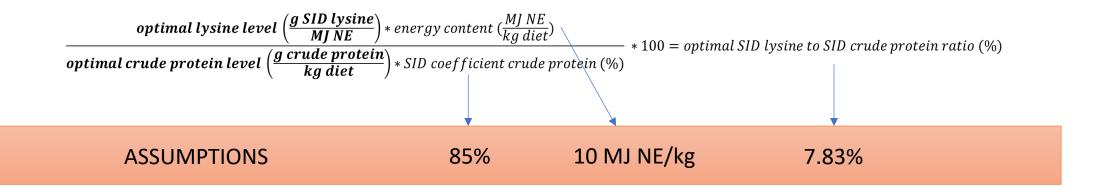
Most studies showed linear increase (without reaching plateau)

in tested lysine range

- number of studies for which a linear, but no linear-plateau model could be fitted
- number of studies for which a linear-plateau model could be fitted

Results – Lys requirement

- **Not possible to determine an accurate value** for the SID lysine requirement of weaned piglets to achieve maximal growth performance
- Analysis of pooled data and individual dose-response experiments predominantly showed continous linear increase in G:F and ADG within the tested SID lysine range
- The results indicate that the SID lysine requirement is at least 1.3 g SID lysine/MJ NE or higher.



Results – Lys recommendations

Requirement is > 1.3 g SID lysine/MJ NE

$$\frac{9.7}{123.5} = 0.0783$$

Max ratio of SID LYS:SID CP?

Optimal crude protein level in relation to lysine level	Optimal lysine level in relation to crude protein level
Scenario 1: 1.50 g SID Lys/MJ NE => 225 g CP/kg diet	Scenario 2: 170 g CP/kg diet => 11.3 g SID Lys/kg diet

Conclusions

- The SID lysine requirement for maximal growth performance seems higher than the level tested in most dose-response studies (> 1.3 g SID Lys/MJ NE)
- Sources of variation in the lysine requirement could not be studied
- Lysine levels (recommendations) should be considered in relation to crude protein levels. Piglets are probably fed below the AA and CP requirement for maximum performance

Future research perspectives

 Determine SID lysine requirement in doseresponse studies using a higher SID lysine range

- Determine optimal SID lysine to SID CP ratio

Thank you

Sophie Goethals, Sam Millet

Jordi Rijpert, Wouter Spek, Paul Bikker

Ad hoc group:

Jan Fledderus, Mario van Erp, Nestor Gutierrez Cespedes

